Lehrstuhl Strömungsmechanik

Statikgebäude Haus IV
Albert-Einstein-Straße 2
18059 Rostock

Fon +49 (0) 381 498 - 9311
Fax +49 (0) 381 498 - 9312
sekretariat.lsmuni-rostockde


Veröffentlichungen

(begutachtet)

2024

Fromm, M.; Bestier, T.; Brüns, S.; Kröger, J.; Kluwe, F.; Hylla, A.; Matin, F.; Seifert, A.; Grundmann, S.

Active flow control applied to a ship rudder model
In: Ship Technology Research, 2024, VOL. 71, NO. 1, 58–76, doi: 0.1080/09377255.2023.2275373

2023

Ramachandran, K.; Sivakandan, M.; Chau, J. L.; Urco, J. M.; Gerding, M.; Grundmann, S.; Smith, S. M.

Investigation of a Dissipating Mesospheric Bore Using Airglow Imager and Direct Numerical Simulation
In: Journal of Geophysical Research: Space Physics, 128 (4), 2023, dx.doi.org/10.1029/2022JA031114

Bruschewski, M.; Wüstenhagen, C.; Domnick, C.; Krewinkel, R.; Shiau, C.-C.; Grundmann, S.; Han, J.-C.

Assessment of the Flow Field and Heat Transfer in a Vane Cooling System Using Magnetic Resonance Velocimetry, Thermochromic Liquid Crystals, and Computational Fluid Dynamics
In: Journal of Turbomachinery, 145(3), 2023, doi: 10.1115/1.4055611

Wüstenhagen, C.; Domnick, C.; John, K.; Bruschewski, M.; Grundmann, S.

Magnetic Resonance Velocimetry Measurements of Internal Blade Cooling Flow and Computational Fluid Dynamic Validation by Data Matching With the Experimental Data
In: Journal of Thermal Science and Engineering Applications, 15 (9), 2023, dx.doi.org/10.1115/1.4062556

2022

Bruschewski, M.; John, K.; Benson, M. J.; Grundmann, S.

Combined temperature and velocity field measurements in thermal fluid systems with magnetic resonance velocimetry
In: tm - Technisches Messen, 89(3), pp. 168–177, 2022, doi: 10.1515/teme-2021-0122

Fromm, M.; Kim, J.; Seifert, A.; Kriegseis, J.; Grundmann, S.

Flow Patterns of Self-Sustained Oscillations in Fluidic Diverters
In: AIAA Journal, 60(7), pp. 4207–4214, 2022, doi: 10.2514/1.J061280

John, K.; Wüstenhagen, C.; Schmidt, S.; Schmitter, S.; Bruschewski, M.; Grundmann, S.

Reynolds stress tensor and velocity measurements in technical flows by means of magnetic resonance velocimetry
In: tm - Technisches Messen, 89(3), pp. 201–209, 2022, doi: 10.1515/teme-2021-0123

2021

Bruschewski, M.; Flint, S.; Becker, S.

Magnetic Resonance Velocimetry Measurement of Viscous Flows through Porous Media: Comparison with Simulation and Voxel Size Stud
In: Physics, 3 (4), pp. 1254–1267, 2021, doi: 10.3390/physics3040079

Bruschewski, M.; John, K.; Wüstenhagen, C.; Rehm, M.; Hadzic, H.; Pohl, P.; Grundmann, S.

Commissioning of an MRI test facility for CFD-grade flow experiments in replicas of nuclear fuel assemblies and other reactor components
In: Nuclear Engineering and Design (375), 111080, 2021, doi: 10.1016/j.nucengdes.2021.111080

Bruschewski, M.; Schmidt, S.; John, K.; Grundmann, S.; Schmitter, S.

An unbiased method for PRF-shift temperature measurements in convective heat transfer systems with functional parts made of metal
In: Magnetic resonance imaging, 75, pp. 124–133, 2021,  doi: 10.1016/j.mri.2020.10.006

Castañeda Fuentes, G.; Hüttmann, F.; Grundmann, S.

Development of Axial Flows in Wake Vortices due to End Effects
In: AIAA Journal, pp. 1–18, 2021, doi: 10.2514/1.J060577

Konnigk, L.; Torner, B.; Bruschewski, M.; Grundmann, S.; Wurm, F.-H.

Equivalent Scalar Stress Formulation Taking into Account Non-Resolved Turbulent Scales
In: Cardiovascular engineering and technology, 12 (3), pp. 251–272, 2021,  doi: 10.1007/s13239-021-00526-x

Rauh, A.; John, K.; Wüstenhagen, C.; Bruschewski, M.; Grundmann, S.

An Unscented Transformation Approach for Stochastic Analysis of Measurement Uncertainty in Magnet Resonance Imaging with Applications in Engineering
In: International Journal of Applied Mathematics and Computer Science, 31 (1), 2021

Schmidt, S.; Bruschewski, M.; Flassbeck, S.; John, K.; Grundmann, S.; Ladd, M. E.; Schmitter, S.

Phase-contrast acceleration mapping with synchronized encoding
In: Magnetic resonance in medicine, 86 (6), pp. 3201–3210, 2021, doi: 10.1002/mrm.28948

Schmidt, S.; John, K.; Kim, S. J.; Flassbeck, S.; Schmitter, S.; Bruschewski, M.

Reynolds stress tensor measurements using magnetic resonance velocimetry: expansion of the dynamic measurement range and analysis of systematic measurement errors
In: Experiments in Fluids, 62 (6), 2021, doi: 10.1007/s00348-021-03218-3

Wüstenhagen, C.; John, K.; Langner, S.; Brede, M.; Grundmann, S.; Bruschewski, M.

CFD validation using in-vitro MRI velocity data – methods for data matching and CFD error quantification
In: Computers in Biology and Medicine (131), 2021, doi: 10.1016/j.compbiomed.2021.104230

2020

Benson, M. J.; Banko, A. J.; Elkins, C. J.; An, D.-G.; Song, S.; Bruschewski, M.; Grundmann, S.; Borup, D.; Eaton, J. K.

The 2019 MRV challenge: turbulent flow through a U-bend
In: Experiments in Fluids, 61 (6), 2020, dx.doi.org/10.1007/s00348-020-02986-8

Bruschewski, M.; Grundmann, S.; Schiffer, H.-P.

Considerations for the design of swirl chambers for the cyclone cooling of turbine blades and for other applications with high swirl intensity
In: International Journal of Heat and Fluid Flow, 86, p. 108670–108670, 2020, dx.doi.org/10.1016/j.ijheatfluidflow.2020.108670

Bruschewski, M.; Piro, M.H.A.; Tropea, C.; Grundmann, S.

Fluid flow in a diametrally expanded CANDU fuel channel – Part 1: Experimental study
In: Nuclear Engineering and Design, 357, 2020, dx.doi.org/10.1016/j.nucengdes.2019.110371

Demel, D.; Kostorz, P.; Schütz, T.; Grundmann, S.

Influence of Windshield Wiper Movement on Vehicle Aerodynamics
In: ATZ worldwide, 122 (10), pp. 54–59, 2020, dx.doi.org/10.1007/s38311-020-0289-7

Demel, D.; Kostorz, P.; Schütz, T.; Grundmann, S.

Einfluss der Scheibenwischerbewegung auf die instationäre Fahrzeugumströmung
In: ATZ - Automobiltechnische Zeitschrift, 122 (10), pp. 54–59, 2020, dx.doi.org/10.1007/s35148-020-0316-4

John, K.; Jahangir, S.; Gawandalkar, U.; Hogendoorn, W.; Poelma, C.; Grundmann, S.; Bruschewski, M.

Magnetic resonance velocimetry in high-speed turbulent flows: sources of measurement errors and a new approach for higher accuracy
In: Experiments in Fluids, 61 (2), pp. 1–17, 2020, dx.doi.org/10.1007/s00348-019-2849-4

John, K.; Rauh, A.; Bruschewski, M.; Grundmann, S.

Towards Analyzing the Influence of Measurement Errors in Magnetic Resonance Imaging of Fluid Flows
In: Acta Cybernetica, 24 (3), pp. 343–372, 2020, dx.doi.org/10.14232/actacyb.24.3.2020.5

Melskotte, J.-E.; Brede, M.; Mail, M.; Mayser, M. J.; Leder, A.; Barthlott, W.

Luft haltende Schiffsbeschichtung nach biologischem Vorbild zur Reibungsreduktion
In: Bernotat, A.; Bertling, J. (Eds.): Prototype Nature, Biologie als Startpunkt in Technologie, Kunst und Design für eine nachhaltigere Zukunft, Im Druck, Oberhausen, Karl-Maria-Laufen-Verlag pp. 205–209, 2020, ISBN 978-3-87468-393-7

Morrison, H.; Lintermann, A.; Grundmann, S.

Hybrid datasets: Incorporating experimental data into Lattice‐Boltzmann simulations
In: Engineering Reports, 2(6), 2020, dx.doi.org/10.1002/ENG2.12177

Piro, M.H.A.; Christon, M.; Tensuda, B.; Poschmann, M.; Bruschewski, M.; Grundmann, S.; Tropea, C.

Fluid flow in a diametrally expanded CANDU fuel channel – Part 2: Computational study
In: Nuclear Engineering and Design, 357, 2020, dx.doi.org/10.1016/j.nucengdes.2019.110372

2019

Bruschewski, M.; Kolkmannn, H.; John, K.; Grundmann, S.

Phase-contrast single-point imaging with synchronized encoding: a more reliable technique for in vitro flow quantification
In: Magnetic resonance in medicine, 81, pp. 2937–2946, 2019, dx.doi.org/10.1002/mrm.27604

Oldenburg, J.; Borowski, F.; Schmitz, K.-P.; Stiehm, M.; Öner, A. Ö.; Quirin, L.; John, K.; Bruschewski, M.; Grundmann, S.

MRV-validated numerical flow analysis of thrombotic potential of coronary stent designs
In: Current Directions in Biomedical Engineering, 5 (1), pp. 77–80, 2019, dx.doi.org/10.1515/cdbme-2019-0020

Verhaegen, G.; Herzog, H.; Korsch, K.; Kerth, G.; Brede, M.; Haase, M.

Testing the adaptive value of gastropod shell morphology to flow: a multidisciplinary approach based on morphometrics computational fluid dynamics and a flow tank experiment
In: Zoological Letters, 5 (5), 2019, dx.doi.org/10.1186/s40851-018-0119-6

2018

Busch, J.; Barthlott, W.; Brede, M.; Terlau, W.; Mail, M.

Bionics and Green Technology in Maritime Shipping: An Assessment of the Effect of Salvinia Air-Layer Hull Coatings for Drag and Fuel Reduction
In: Philosophical Transactions, Series A, 377 (2138), 2018, dx.doi.org/10.1098/rsta.2018.0263

Jurasinski, G.; Janssen, M.; Voss, M.; Böttcher, M. E.; Brede, M.; Burchard, H.; Forster, S.; Gosch, L., Gräwe, U.; Gründling-Pfaff, S.; Haider, F.; Ibenthal, M.; Karow, N.; Karsten, U.; Kreuzburg, M.; Lange, X.; Leinweber, P.; Massmann, G.; Ptak, T.;

Understanding the Coastal Ecocline: Assessing Sea-Land-Interactions at Non-tidal, Low-lying Coasts Through Interdisciplinary Research
In: Front. Mar. Sci., 2018, dx.doi.org/10.3389/fmars.2018.00342

Simon, B.; Markus, D.; Tropea, C.; Grundmann, S.

Cancellation of Tollmien–Schlichting Waves in Direct Vicinity of a Plasma Actuator
In: AIAA Journal, 56 (5), pp. 1760–1769, 2018, dx.doi.org/10.2514/1.J056265

2017

Morrison, H.

Lattice Boltzmann Simulationen zur Umströmung von Objekten am Meeresboden
Dissertation, 2017, Universität Rostock

Piro, M.H.A.; Wassermann, F.; Grundmann, S.; Tensuda, B.; Kim, S. J.; Christon, M.; Berndt, M.; Nishimura, M.; Tropea, C.

Fluid flow investigations within a 37 element CANDU fuel bundle supported by magnetic resonance velocimetry and computational fluid dynamics
In: International Journal of Heat and Fluid Flow, 66, pp. 27–42, 2017, dx.doi.org/10.1016/j.ijheatfluidflow.2017.04.010

Rückborn, T.

Numerische Simulation von Sedimenttransport im Umfeld versandeter Zylinder
Dissertation, 2017, Universität Rostock

Werschnik, H.; Hilgert, J.; Wilhelm, M.; Bruschewski, M.; Schiffer, H.-P.

Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
In: Journal of Turbomachinery, 139 (8), p. 21040–21040, 2017, dx.doi.org/10.1115/1.4035832

2016

Bruschewski, M.; Scherhag, C.; Schiffer, H.-P.; Grundmann, S.

Influence of Channel Geometry and Flow Variables on Cyclone Cooling of Turbine Blades
In: Journal of Turbomachinery, 138 (6), p. 61005–61005, 2016, dx.doi.org/10.1115/1.4032363

Kriegseis, J.; Simon, B.; Grundmann, S.

Towards In-Flight Applications? A Review on DBD-based Boundary-Layer Control
In: AMR (Applied Mechanics Reviews) 15-1083, 2016, dx.doi.org/10.1115/1.4033570

Maden, I.; Maduta, R.; Hofmann, J.; Jakirlić, S.; Kriegseis, J.; Tropea, C.; Grundmann, S.

Modelling the plasma-actuator-related turbulence production in RANS closures by reference to complementary experimental investigations
In: Flow, Turbulence and Combustion 2016, pp. 1–23, 2016, dx.doi.org/10.1007/s10494-016-9779-5

Morrison, H. E.; Brede, M.; Dehnhardt, G.; Leder, A.

Simulating the flow and trail following capabilities of harbour seal vibrissae with the Lattice Boltzmann Method
In: Journal of Computational Science, 17 (2), pp. 394–402, 2016, dx.doi.org/10.1016/j.jocs.2016.04.004

Simon, B.; Fabbiane, N.; Nemitz, T.; Bagheri, S.; Henningson, D.; Grundmann, S.

In-flight active wave cancelation with delayed-x-LMS control algorithm in a laminar boundary layer
In: Experiments in Fluids 57:160, 2016, dx.doi.org/10.1007/s00348-016-2242-5

Simon, B.; Filius, A.; Tropea, C.; Grundmann, S.

IR-Thermography for Dynamic Detection of Laminar-Turbulent Transition
In: Experiments in Fluids 57: 93, 2016, dx.doi.org/10.1007/s00348-016-2178-9

2015

Barckmann, K.; Tropea, C.; Grundmann, S.

Attenuation of Tollmien–Schlichting Waves Using Plasma Actuator Vortex Generators
In: AIAA Journal, 53 (5), pp. 1384–1388, 2015, dx.doi.org/10.2514/1.J053043

Buchenberg, W. B.; Wassermann, F.; Grundmann, S.; Jung, B.; Simpson, R.

Acquisition of 3D temperature distributions in fluid flow using proton resonance frequency thermometry
In: Magnetic resonance in medicine, 2015, dx.doi.org/10.1002/mrm.25874

Fabbiane, N.; Simon, B.; Fischer, F.; Grundmann, S.; Bagheri, S.; Henningson, D. S.

On the role of adaptivity for robust laminar flow control
In: Journal of Fluid Mechanics, 767, 2015, dx.doi.org/10.1017/jfm.2015.45

Freudenhammer, D.; Peterson, B.; Ding, C.; Böhm, B.; Grundmann, S.

The influence of cylinder head geometry variations on the volumetric intake flow captured by Magnetic Resonance Velocimetry
In: SAE, 8 (4), pp. 1826–1836, 2015, dx.doi.org/10.4271/2015-01-1697

Kriegseis, J.; Maden, I.; Schwarz, C.; Tropea, C.; Grundmann, S.

Addendum to 'velocity-information based force-term estimation of dielectric barrier discharge plasma actuators
In: Journal of Physics D: Applied Physics, 48 (32), p. 325003–325003, 2015, dx.doi.org/10.1088/0022-3727/48/32/329401

Maden, I.; Maduta, R.; Kriegseis, J.; Jakirlic, S.; Grundmann, S.; Tropea, C.

Plasma-actuated Manipulation of Secondary Flow Towards Pressure Recovery Enhancement in a 3D Diffuser Modelled by an Eddy-resolving Second-moment Closure
In: Flow, Turbulence and Combustion, 2015, dx.doi.org/10.1007/s10494-015-9641-1

Piro, M.; Wassermann, F.; Grundmann, S.; Leitch, B. W.; Tropea, C.

Progress in on-going experimental and computational fluid dynamic investigations within a CANDU fuel channel
In: Nuclear Engineering and Design, pp. 184–200, 2015, dx.doi.org/10.1016/j.nucengdes.2015.07.009

Simon, B.; Nemitz, T.; Rohlfing, J.; Fischer, F.; Mayer, D.; Grundmann, S.

Active flow control of laminar boundary layers for variable flow conditions
In: International Journal of Heat and Fluid Flow, 56, pp. 344–354, 2015, dx.doi.org/10.1016/j.ijheatfluidflow.2015.09.003

2014

Duchmann, A.; Simon, B.; Tropea, C.; Grundmann, S.

Dielectric Barrier Discharge Plasma Actuators for In-Flight Transition Delay
In: AIAA Journal, 52 (2), pp. 358–367, 2014, dx.doi.org/10.2514/1.J05248

Freudenhammer, D.; Baum, E.; Peterson, B.; Böhm, B.; Jung, B.; Grundmann, S.

Volumetric intake flow measurements of an IC engine using Magnetic Resonance Velocimetry
In: Experiments in Fluids, 55 (5), 2014, dx.doi.org/10.1007/s00348-014-1724-6

Kriegseis, J.; Barckmann, K.; Frey, J.; Tropea, C.; Grundmann, S.

Competition between pressure effects and airflow influence for the performance of plasma actuators
In: Physics of Plasmas, 21 (5), p. 53511–53511, 2014, dx.doi.org/10.1063/1.4880098

Neumann, M.; Friedrich, C.; Kriegseis, J.; Grundmann, S.; Czarske, J.

Nichtinvasives, laseroptisches Messsystem zur hochaufgelösten Vermessung von Strömungsfeldern und Volumenkräften
In: tm – Technisches Messen, 81 (4), 2014, dx.doi.org/10.1515/teme-2014-1024

Stiehm, M.; Brede, M.; Quosdorf, D.; Martin, H.; Schmitz, K.-P.; Leder, A.

Using CFD for a Sensitivity Analysis of Stent Design Parameters
In: Biomedizinische Technik/Biomedical Engineering, 59 (s1), pp. 917–920, 2014, dx.doi.org/10.1515/bmt-2014-5012

2013

Duchmann, A.; Grundmann, S.; Tropea, C.

Delay of natural transition with dielectric barrier discharges
In: Experiments in Fluids, 54 (3), 2013, dx.doi.org/10.1007/s00348-013-1461-2

Duchmann, A.; Tropea, C.; Grundmann, S.

Linear Stability Analysis of DBD Boundary-Layer Flow-Control Experiments and Simulations
In: International Journal of Flow Control, 5 (2), pp. 111–120, 2013, dx.doi.org/10.1260/1756-8250.5.2.111

Wassermann, F.; Hecker, D.; Jung, B.; Markl, M.; Seifert, A.; Grundmann, S.

Phase-Locked 3D3C-MRV Measurements in a Bi-stable Fluidic Oscillator
In: Experiments in Fluids, 54 (3), 2013

Kriegseis, J.; Duchmann, A.; Tropea, C.; Grundmann, S.

On the classification of dielectric barrier discharge plasma actuators: A comprehensive performance evaluation study
In: Journal of Applied Physics, 114 (5), p. 53301–53301, 2013, dx.doi.org/10.1063/1.4817366

Kriegseis, J.; Grundmann, S.; Tropea, C.

Performance reduction of dielectric barrier discharge plasma actuators at higher mach numbers
In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 121, pp. 209–217, 2013, dx.doi.org/10.1007/978-3-642-35680-3_26

Kriegseis, J.; Schröter, D.; Barckmann, K.; Duchmann, A.; Tropea, C.; Grundmann, S.

Closed-Loop Performance Control of Dielectric-Barrier-Discharge Plasma Actuators
In: AIAA Journal, 51 (4), pp. 961–967, 2013, dx.doi.org/10.2514/1.J052159

Kriegseis, J.; Schwarz, C.; Tropea, C.; Grundmann, S.

Velocity-information-based force-term estimation of dielectric-barrier discharge plasma actuators
In: Journal of Physics D: Applied Physics, 46 (5), p. 55202–55202, 2013, dx.doi.org/10.1088/0022-3727/46/5/055202

Kurz, A.; Goldin, N.; King, R.; Tropea, C.; Grundmann, S.

Hybrid transition control approach for plasma actuators
In: Experiments in Fluids, 54 (11), 2013, dx.doi.org/10.1007/s00348-013-1610-7

Maden, I.; Maduta, R.; Kriegseis, J.; Jakirlić, S.; Schwarz, C.; Grundmann, S.; Tropea, C.

Experimental and computational study of the flow induced by a plasma actuator
In: International Journal of Heat and Fluid Flow, 41, pp. 80–89, 2013, dx.doi.org/10.1016/j.ijheatfluidflow.2013.02.013

Neumann, M.; Friedrich, C.; Czarske, J.; Kriegseis, J.; Grundmann, S.

Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator
In: Journal of Physics D: Applied Physics, 46 (4), p. 42001–42001, 2013, dx.doi.org/10.1088/0022-3727/46/4/042001

Stiehm, M.; Brede, M.; Quosdorf, D.; Leder, A.

On the creation of wall shear stress by helical flow structures in stented coronary vessels
In: BioNanoMaterials, Walter de Gruyter • Berlin • Boston, 14, pp. 109–115, 2013, dx.doi.org/10.1515/bnm-2013-0003

Stiehm, M.; Brede, M.; Quosdorf, D.; Martin, H.; Leder, A.

A Sensitivity Analysis of Stent Design Parameters using CFD
In: Biomedizinische Technik/Biomedical Engineering, Walter de Gruyter • Berlin • Boston, 58 (s1), 2013, dx.doi.org/10.1515/bmt-2013-4351

Wassermann, F.; Hecker, D.; Jung, B.; Markl, M.; Seifert, A.; Grundmann, S.

Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator
In: Experiments in Fluids, 54 (3), 2013, dx.doi.org/10.1007/s00348-013-1487-5

2012

Grundmann, S.; Sayles, E. L.; Elkins, C. J.; Eaton, J. K.

Sensitivity of an asymmetric 3D diffuser to vortex-generator induced inlet condition perturbations
In: Experiments in Fluids, 52 (1), pp. 11–21, 2012, dx.doi.org/10.1007/s00348-011-1205-0

Grundmann, S.; Wassermann, F.; Lorenz, R.; Jung, B.; Tropea, C.

Experimental investigation of helical structures in swirling flows
In: International Journal of Heat and Fluid Flow, 37, pp. 51–63, 2012, dx.doi.org/10.1016/j.ijheatfluidflow.2012.05.003

Hanke, W.; Wieskotten, S.; Niestrok, B.; Miersch, L.; Witte, M.; Brede, M.; Leder, A.; Dehnhardt, G.

Hydrodynamic Perception in Pinnipeds
In: Tropea, C.; Bleckmann, H. (Eds.): Nature-Inspired Fluid Mechanics (Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 119, ) pp. 255–270, 2012, ISBN 978-3-642-28301-7

Hörsten, C. von; Sieg, M.; Hüttmann, F.; Leder, A.

Bestimmung von Rührwerksbeiwerten — Vergleich zwischen Geschwindigkeits- und Kraftmessungen
In: tm - Technisches Messen, 79 (6), pp. 310–317, 2012, dx.doi.org/10.1524/teme.2012.021

Kriegseis, J.; Möller, B.; Grundmann, S.; Tropea, C.

On Performance and Efficiency of Dielectric Barrier Discharge Plasma Actuators for Flow Control Applications
In: International Journal of Flow Control, 4 3-4, pp. 125–132, 2012, dx.doi.org/10.1260/1756-8250.4.3-4.125

Kurz, A.; Tropea, C.; Grundmann, S.; Goldin, N.; King, R.

Development of active wave cancellation using DBD plasma actuators for in-flight transition control
In: 6th AIAA Flow Control Conference 2012, 2012

Melskotte, J.-E.; Brede, M.; Leder, A.; Mayser, M.; Barthlott, W.

Optische Geschwindigkeitsmessungen an Luft-haltenden Deckflügeln des Notonecta glauca
In: tm - Technisches Messen, 79 (6), pp. 297–303, 2012, dx.doi.org/10.1524/teme.2012.0212

Schmidt, W.; Quosdorf, D.; Siewert, S.; Hinze, U.; Chichkov, B.; Brede, M.; Leder, A.; Guthoff, R.; Schmitz, K.-P.

Micro Particle-Image-Velocimetry for characterization of a micro-mechanical valve in a glaucoma implant
In: Biomedizinische Technik/Biomedical Engineering, 57 (s1), pp. 243–246, 2012, dx.doi.org/10.1515/bmt-2012-4296

Stiehm, M.; Martin, H.; Quosdorf, D.; Brede, M.; Schmitz, K.-P.; Leder, A.

Numerical and Experimental Analysis of Mechanical Loads on Stent-Vessel-Systems
In: Biomedizinische Technik/Biomedical Engineering, 57 (s1), pp. 14–17, 2012, dx.doi.org/10.1515/bmt-2012-4131

Vieira, D.; Duchmann, A.; Schäfer, M.; Grundmann, S.

Numerical simulation of boundary-layer stabilization using plasma actuators
In: ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, 2012

Wassermann, F.; Grundmann, S.; Kloss, M.; Schiffer, H.-P.

Swirl flow investigations on the enhancement of heat transfer processes in cyclone cooling ducts
In: Proceedings of the ASME Turbo Expo, 4, 2012, dx.doi.org/10.1115/GT2012-69395

Widmann, A.; Duchmann, A.; Kurz, A.; Grundmann, S.; Tropea, C.

Measuring Tollmien–Schlichting waves using phase-averaged particle image velocimetry
In: Experiments in Fluids, 53 (3), pp. 707–715, 2012, dx.doi.org/10.1007/s00348-012-1315-3

Witte, M.; Hanke, W.; Wieskotten, S.; Miersch, L.; Brede, M.; Dehnhardt, G.; Leder, A.

On the Wake Flow Dynamics behind Harbor Seal Vibrissae - A Fluid Mechanical Explanation for an Extraordinary Capability
In: Tropea, C.; Bleckmann, H. (Eds.): Nature-Inspired Fluid Mechanics (Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 119, ) pp. 271–289, 2012, ISBN 978-3-642-28301-7

2011

Ditsche-Kuru, P.; Schneider, E. S.; Melskotte, J.-E.; Brede, M.; Leder, A.; Barthlott, W.

Superhydrophobic surfaces of the water bug Notonecta glauca
In: Beilstein Journal of Nanotechnology, 2, pp. 137–144, 2011, dx.doi.org/10.3762/bjnano.2.17

Grundmann, S.; Sayles, E. L.; Eaton, J. K.

Sensitivity of an asymmetric 3D diffuser to plasma-actuator induced inlet condition perturbations
In: Experiments in Fluids, 50 (1), pp. 217–231, 2011, dx.doi.org/10.1007/s00348-010-0922-0

Kriegseis, J.; Grundmann, S.; Tropea, C.

Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators
In: Journal of Applied Physics, 110 (1), p. 13305–13305, 2011, dx.doi.org/10.1063/1.3603030

Kriegseis, J.; Möller, B.; Grundmann, S.; Tropea, C.

Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators
In: Journal of Electrostatics, 69 (4), pp. 302–312, 2011, dx.doi.org/10.1016/j.elstat.2011.04.007

Kriegseis, J.; Schröter, D.; Grundmann, S.; Tropea, C.

Online-characterization of dielectric barrier discharge plasma actuators for optimized efficiency of aerodynamical flow control applications
In: Journal of Physics: Conference Series, 301, p. 12020–12020, 2011, dx.doi.org/10.1088/1742-6596/301/1/012020

Miersch, L.; Hanke, W.; Wieskotten, S.; Hanke, F. D.; Oeffner, J.; Leder, A.; Brede, M.; Witte, M.; Dehnhardt, G.

Flow sensing by pinniped whiskers
In: Philosophical Transactions of the Royal Society B: Biological Sciences, 366 (1581), pp. 3077–3084, 2011, dx.doi.org/10.1098/rstb.2011.0155

Quosdorf, D.; Brede, M.; Leder, A.; Lootz, D.; Martin, H.; Schmitz, K.-P.

Micro-Particle-Image-Velocimetry zur Bestimmung der Geschwindigkeiten in einem Koronargefäß mit Stent
In: tm - Technisches Messen, 78 (5), pp. 239–245, 2011, dx.doi.org/10.1524/teme.2011.0134

2010

Barthlott, W.; Schimmel, T.; Wiersch, S.; Koch, K.; Brede, M.; Barczewski, M.; Walheim, S.; Weis, A.; Kaltenmaier, A.; Leder, A.; Bohn, H. F.

The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water
In: Advanced Materials, 22 (21), pp. 2325–2328, 2010, dx.doi.org/10.1002/adma.200904411

Hanke, W.; Witte, M.; Miersch, L.; Brede, M.; Oeffner, J.; Michael, M.; Hanke, F.; Leder, A.; Dehnhardt, G.

Harbor seal vibrissa morphology suppresses vortex-induced vibrations
In: Journal of Experimental Biology, 213 (15), pp. 2665–2672, 2010, dx.doi.org/10.1242/jeb.043216

Kriegseis, J.; Dehler, T.; Grundmann, S.; Tropea, C.

Flowfield-characteristics generated by DBD plasma actuators
In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 112, pp. 233–240, 2010, dx.doi.org/10.1007/978-3-642-14243-7_29

Quosdorf, D.; Brede, M.; Leder, A.; Lootz, D.; Martin, H.; Behrend, D.; Schmitz, K.-P.

Experimentelle Ermittlung stationärer Geschwindigkeitsfelder an gestenteten Gefäßabschnitten mit Hilfe der Micro-PIV
In: Biomedizinische Technik/Biomedical Engineering, 55 (s1), pp. 50–53, 2010, dx.doi.org/10.1515/BMT.2010.709

vor 2010

Grundmann, S.; Tropea, C.

Experimental damping of boundary-layer oscillations using DBD plasma actuators
In: International Journal of Heat and Fluid Flow, 30 (3), pp. 394–402, 2009, dx.doi.org/10.1016/j.ijheatfluidflow.2009.03.004

Jensch, M.; Hüttmann, F.; Brede, M.; Leder, A.

Optical Measurements in the Wake of a Circular Cylinder of Finite Length at a High Reynoldsnumber
In: Hirschel, E. H.; Dobriloff, C.; Fujii, K.; Haase, W.; Leer, B.; Leschziner, M. A.; Nitsche, W.; Pandolfi, M.; Periaux, J.; Rizzi, A.; Roux, B. (Eds.): Imaging Measurement Methods for Flow Analysis, Berlin, Heidelberg, Springer (Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 106, ) pp. 185–195, 2009, ISBN 978-3-642-01105-4

Quadros, R.; Grundmann, S.; Tropea, C.

Optimization of operation parameters of DBD plasma actuators for influencing TS-waves
In: Turbulence, Heat and Mass Transfer (6), pp. 923–926, 2009

Frederich, O.; Wassen, E.; Thiele, F.; Jensch, M.; Brede, M.; Hüttmann, F.; Leder, A.

Numerical Simulation of the Flow Around a Finite Cylinder with Ground Plate in Comparison to Experimental Measurements
In: Tropea, C.; Jakirlic, S.; Heinemann, H.-J.; Henke, R.; Hönlinger, H. (Eds.): New Results in Numerical and Experimental Fluid Mechanics VI, Berlin, Heidelberg, Springer Berlin Heidelberg (Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 96, ) pp. 348–355, 2008, ISBN 978-3-540-74458-0

Grundmann, S.; Tropea, C.

Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators
In: Experiments in Fluids, 44 (5), pp. 795–806, 2008, dx.doi.org/10.1007/s00348-007-0436-6

Grundmann, S.; Klumpp, S.; Tropea, C.

Experimental and numerical investigations of boundary-layer influence using plasma-actuators
In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 95, pp. 56–68, 2007, dx.doi.org/10.1007/978-3-540-71439-2_4

Grundmann, S.; Tropea, C.

Experimental transition delay using glow-discharge plasma actuators
In: Experiments in Fluids, 42 (4), pp. 653–657, 2007, dx.doi.org/10.1007/s00348-007-0256-8

Grundmann, S.; Tropea, C.

Experimental transition delay using glow-discharge plasma actuators
In: Experiments in Fluids, 42 (4), pp. 653–657, 2007, dx.doi.org/10.1007/s00348-007-0256-8

Grundmann, S.; Klumpp, S.; Tropea, C.

Stabilizing a laminar boundary-layer using plasma-actuators
In: ICAS-Secretariat - 25th Congress of the International Council of the Aeronautical Sciences 2006, 2, 2006

Palm, R.; Grundmann, S.; Weismüller, M.; Šarić, S.; Jakirlić, S.; Tropea, C.

Experimental characterization and modelling of inflow conditions for a gas turbine swirl combustor
In: International Journal of Heat and Fluid Flow, 27 (5), pp. 924–936, 2006, dx.doi.org/10.1016/j.ijheatfluidflow.2006.03.016

Palm, R.; Grundmann, S.; Weismuller, M.; Šarić, S.; Jakirlić, S.; Tropea, C.

Experimental characterization and modelling of inflow conditions for a gas turbine swirl combustor
In: Engineering Turbulence Modelling and Experiments 6, 2005, dx.doi.org/10.1016/B978-008044544-1/50080-7

Richter, F.

Experimentelle Untersuchungen zur Charakterisierung der Strömungs- und Wirbelstrukturen im Nachlauf eines Kreiszylinderstumpfes unter Berücksichtigung des Einflusses einer Zentrifugalbeschleunigung
Monsenstein und Vannerdat, Münster, Westf., (Dissertation, Universität Rostock), 2005, ISBN 3-86582-167-7

Brede, M.

Measurement of turbulence production in the cylinder separated shear-layer using event-triggered Laser-Doppler anemometry
In: Experiments in Fluids, 36 (6), pp. 860–866, 2004, dx.doi.org/10.1007/s00348-003-0768-9

Hassel, E.; Nocke, J.; Leder, A.; Brede, M.; Meier, W.; Keck, O.

Vorstellung eines neuartigen Brenners zur Erzeugung von turbulenten, verdrallten Kohlenwasserstoff-Diffusionsflammen
New kind of burner for turbulent hydro carbon diffusion flames for CFD validation, In: Forschung im Ingenieurwesen, 68 (1), pp. 1–7, 2003, dx.doi.org/10.1007/s10010-003-0104-9

Jianu, A.; Brede, M.; Leder, A.

Experimental investigation of propagating flow instabilities generated by super vibratory agitation
In: Experimental Thermal and Fluid Science, 26, pp. 275–282, 2002, dx.doi.org/10.1016/S0894-1777(02)00137-1

Brede, M.

Turbulenzentstehung in der abgelösten Scherschicht im Zylindernachlauf
In: Schiffbauforschung, 40, pp. 3–14, 2001

Brede, M.

Sekundärwirbel in Nachlauf- und freien Scherschichten in der Transition
In: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 79 (s1), pp. 211–214, 1999, dx.doi.org/10.1002/zamm.19990791355

Brede, M.

Dreidimensionale Wirbelstrukturen im Zylindernachlauf beim laminar-turbulenten Übergang im Reynoldszahlbereich 160 bis 500
Bericht 18/1996, Dissertation, Max-Planck-Inst. für Strömungsforschung, Göttingen, 1996

Brede, M.; Eckelmann, H.; Rockwell, D.

On secondary vortices in the cylinder wake
In: Physics of Fluids, 8 (8), pp. 2117–2124, 1996, dx.doi.org/10.1063/1.868986

Brede, M.; Eckelmann, H.; König, M.; Noack, B. R.

Discrete shedding modes of the cylinder wake in a jet with a homogeneous core
In: Physics of Fluids, 6 (8), pp. 2711–2715, 1994, dx.doi.org/10.1063/1.868160

Brede, M.; Ohle, F.; Eckelmann, H.

Verfahren zur Optimierung von Düsenkonturen
Methods for optimization of nozzle contours, In: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 73 (6), pp. T491–T493, 1993, dx.doi.org/10.1002/zamm.19930730602

Ohle, F.; Brede, M.; Eckelmann, H.

No feedback control of a Kármán vortex street
In: Helv. Phys. Acta, 65, pp. 125–126, 1992, dx.doi.org/10.5169/seals-116383